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Abstract
The tunneling phenomenon in non-integrable systems is studied in the
framework of complex semiclassical theory. Complex trajectories which
dominate tunneling in the presence of chaos (chaotic tunneling) are investigated
numerically for several quantum maps. The discovery of a characteristic
structure in the initial value representation of tunneling trajectories, named
the Laputa chain, is reviewed, and it is shown how trajectories starting from
Laputa chains make the dominant contribution to the semiclassical calculation
of the wavefunction in the chaotic regime. This supports the argument that
Laputa chains play an important role in the fully complex-domain semiclassical
description of chaotic tunneling. Further, numerical analysis shows that the
Laputa chain has distinct asymptotic properties in the long time limit. In
particular, it is shown that the imaginary action along the trajectories starting
from the Laputa chain, which determines the contribution to the tunneling
probability, tends to converge absolutely in the asymptotic limit. On the basis of
these features, we propose an empirical definition of the Laputa chain which can
provide a basis for further mathematical development. Moreover, a connection
is pointed out between the asymptotic structure of Laputa chains and Julia sets
manifest in asymptotic dynamics of complex maps. Based on these results,
we make the conjecture that Julia sets play a fundamental role in the complex
semiclassical dynamical theory of tunneling in non-integrable systems.

PACS numbers: 05.45.Mt, 03.65.Sq, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A particle in quantum mechanics can penetrate into the region where the transition is strictly
forbidden in classical mechanics. Tunneling in quantum mechanics appears as a purely wave
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mechanical effect and has no counterpart in classical mechanics. One may thus consider that
quantum tunneling is not translatable in terms of the classical mechanics and no connection
could be made between purely wave phenomena and particle concepts.

However, if one extends the classical mechanics it is possible to describe even purely
quantum phenomena such as tunneling in terms of trajectories. In particular, the extension
of classical dynamics to the complex plane is a common and natural way to treat quantum
tunneling. A method to construct quantum mechanics exactly in terms of complex trajectories
has been proposed by Balian and Bloch [1] and exact quantization using complex periodic
orbits has been done by Voros [2]. The instanton method has broadly been applied to
evaluate tunneling probabilities [3, 4]. A more sophisticated complex trajectory method
was first developed by Miller for the semiclassical description of the multi-dimensional
reactive scattering process [5]. However, applications of extended dynamics have been so
far restricted to one-dimensional (or effectively one-dimensional) systems whose underlying
classical dynamics is simple. The situation is drastically more complicated in systems with
more than one dimension in which the motion is not integrable and complicated dynamics due
to chaos is generic.

Phase space in non-integrable systems is disjointedly decomposed into infinitely many
invariant regions filled with quasiperiodic (rotational) and chaotic orbits. Each invariant
set works as a dynamical barrier in classical phase space, while there is nonzero flux in
quantum mechanics due to tunneling between them [6]. Recent studies on tunneling in non-
integrable systems have revealed that the existence of chaos significantly affects the nature of
quantum tunneling. Phenomena observed in purely quantum mechanical calculation of chaotic
systems show that tunneling can become chaotic [7], or chaos seems to assist tunneling [8, 9].
Chaos-assisted tunneling has been observed in cold-atom experiments [10–12] and also in the
microwave spectra of superconducting cavities [13]. Furthermore, it has been reported that
the emergence of nonlinear resonances, which is a signature of breakdown of integrability,
causes enhancement of the tunneling rate [14].

Several efforts have already been made to theoretically describe the rich variety of
chaos-assisted tunneling effects. Chaos-assisted tunneling has been explained in terms of
a combination of a certain tunneling process through dynamical barriers and the transport
process by real chaotic trajectories [15]. It has been shown that sensitive modulation of
tunneling splitting under an external perturbation can be well captured by combining an
instanton orbit with quantized real space chaos [16].

The combination of instanton theory and quantum perturbation theory also allows the
description of novel aspects of tunneling assisted by resonances [14]. These approaches are
basically hybrid approaches composed of purely real classical processes (e.g. chaos and/or
resonance), and partly complexified classical processes (e.g. instanton) as well as purely
quantum processes, in some cases.

In this paper and the following paper ([17], hereafter referred to as part II), we present
an approach which allows the description of chaotic tunneling phenomena only in terms of
complex classical dynamics. This paper combines and extends the results of a series of earlier
papers [18, 19, 21].

In earlier papers [18, 19, 21], we have done extensive semiclassical studies of chaotic
maps and found that a particular class of complex paths dominate the tunneling transitions
to classically forbidden regions. The dominant paths contributing to the time-domain
semiclassical propagator form a set of points having chained structures, named Laputa chains,
in the plane of initial values. We also showed that the main features of the tunneling
wavefunctions in the chaotic systems can be obtained by considering just these chained
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structures and gave phenomenological explanations why these structures are significant in
chaotic tunneling processes.

This paper aims at giving a clearer specification for the Laputa chain and proposing its
definition which fits for further mathematical development. In part II, based on the definition
tentatively proposed in this paper, a mathematically more strict definition of the Laputa chain
is given and a close connection to the Julia set will be proved.

This paper starts with a description of the method of complexifying semiclassical dynamics
which can treat chaotic tunneling in terms of complexified classical paths. Then some examples
of Laputa chains, which were found to dominate the chaotic tunneling process [18, 19, 21],
are presented together with the reason for them to play special roles in the tunneling process.
After reviewing some phenomenological characterization of Laputa chains, we investigate the
asymptotic behavior of Laputa chains which exhibit quite remarkable features distinguishing
them from other tunneling orbits. These features are used for giving a definition of Laputa
chains, and they also lead to an important implication for the close relation between Laputa
chains and Julia sets.

Some of the key ideas elaborated in the present and the following paper were presented
in our brief preliminary reports [19, 20]. However, due to the limit length of the previous
reports, we could not demonstrate the details which are necessary to fully comprehend our
observations and arguments. The present paper and the following paper will provide fuller
details of our work, in a synergetic approach combining numerical investigations with rigorous
mathematical considerations.

In applying the semiclassical method in the complex domain, we inevitably encounter the
issue of the Stokes phenomenon in evaluating the quantum propagator semiclassically [22].
The treatment of the Stokes phenomenon requires an additional technicality, which was also
developed recently [23].

In this paper we consider the map system. In the flow system, not only the dynamical
variables but also time should be complexified, and the latter procedure introduces a specific
analytic behavior absent in the map system. Indeed, it was found that the singularity of the
trajectories on the complex t-plane plays an important role in the continuous flow problem,
which results in the formation of a set similar to the Laputa chain [24].

The organization of this paper is as follows. In section 2, we first introduce the model
system used in our analysis. The propagator in the time domain is given both for a fully
quantum map and its semiclassical approximation. We introduce a method for representing
the complex trajectories in the semiclassical propagator using the initial value representation.

In section 3, we discuss generic features seen in the initial value representation. In
particular it is shown that the tunneling trajectories forming the Laputa chain mentioned
above dominate the tunneling process. The relation between tunneling components in the
wavefunction and the characteristic features of Laputa chains is discussed.

In section 4 we provide numerical evidence that the Laputa chains exhibit a strong tendency
of convergence to asymptotic structure in the limit of many iterations. Remarkable features of
tunneling trajectories originating in the Laputa chains are also discussed. On the basis of these
observed features we give a definition of the Laputa chain. We conjecture that the Laputa
chain is strongly connected with the Julia set, which is a key notion in the mathematical theory
of complex dynamical systems, and present numerical evidence supporting this conjecture.

Part II begins by establishing in section 2 the mathematical relationship between the
Laputa chains and the Julia set. The mathematical statements presented there are reexamined
by numerical analysis in section 3, and we finally propose a hypothesis which guarantees the
existence of tunneling trajectories in non-integrable systems in section 4.
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2. Complex semiclassical analysis and tunneling

2.1. The time-domain semiclassical approach

Generic Hamiltonian systems are neither completely integrable nor uniformly hyperbolic.
Phase space is filled with quasi-periodic and chaotic regions that are intermingled in a self-
similar way. Invariant components are not limited to quasi-periodic and chaotic orbits, but
periodic orbits or the orbits on cantori also form invariant sets. Such systems whose phase
space is a mixture of infinitely many invariant components are called mixed systems. No
ergodic component exists such that its support covers the entire phase space and the system is
non-hyperbolic in general.

Dynamical tunneling is understood as the transition between different invariant
components in classical phase space. For example, congruent tori separated by chaotic
regions are connected via tunneling processes. There exist nonzero tunneling couplings
between eigenfunctions whose supports are on each torus. This is a typical situation in which
dynamical tunneling takes place [6].

In order to relate quantum tunneling with dynamics in classical phase space, it is possible
to apply the semiclassical analysis. One may think that the energy-domain argument is most
preferred and even canonical as performed in the semiclassical analysis of hyperbolic systems.

We note, however, that this is not always the case in regard to the issue of dynamical
tunneling. This is because dynamical tunneling essentially concerns mixed-type systems for
which the semiclassical quantization rule in the energy domain has not been established even
formally. Rather we should say that the difficulty lies in our ignorance of tunneling processes
in mixed phase space. To incorporate the classically forbidden processes, the treatment must
include information about invariant sets in the complex phase space. As shown below, it is
clear that complex orbits are the most plausible candidates to describe dynamical tunneling,
but invariant sets in complex classical phase space are far from well understood. For these
reasons, performing the energy-domain semiclassical analysis is not a promising strategy, and
hence we here take the time-domain approach.

2.2. Classical maps

The model system we shall study is the so-called kicked rotor model

H(q, p, t) = H0(p) + V (q)
∑

n

δ(t − n). (1)

Here H0(p) and V (q) represent the kinetic and potential terms, respectively. The canonical
equations of motion induce the two-dimensional area-preserving map from t = n − 0 to
t = n + 1 − 0:

g : (pn, qn) �−→ (H ′
0(pn) − V ′(qn), qn + H ′

0(pn − V ′(qn))). (2)

Formally we can write the n-step point on the trajectory with the initial condition (q0, p0) as
(qn, pn) = gn(q0, p0).

In the following, we consider three types of maps:
(A) Standard map

H0(p) = p2

2
, V (q) = K sin q. (3)

Here the parameter K controls the degree of nonlinearity. As far as the real-valued classical
dynamics is concerned, it is believed that the standard map captures a generic feature of nearly
integrable Hamiltonian systems. In order to see quantum tunneling between the quasiperiodic
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and chaotic regions more explicitly, it is more convenient to modify the original standard map
into
(B) Modified standard map

H0(p) = p2

2

(p/pd)
6

(p/pd)6 + 1
+ ωp, V (q) = K sin q. (4)

If |p| � pd , we can approximate H0(p) by ωp, so the corresponding classical map is almost
integrable in this domain, whereas for the region |p| � pd the system returns to the standard
map. Thus, by taking pd and K suitably large, we can design the phase space such that an
integrable region around the center line p = 0 is sandwiched between fully chaotic regions.
Then by launching the wavepacket from the initial state

Aα = {(q, p) : p = 0, 0 � q � 2π} (5)

we can realize the typical situation of dynamical tunneling in the p-direction from the
quasiperiodic region (KAM region) to chaotic seas [18].

The third system that we study most closely here is the system with a cubic polynomial
potential.
(C) Hénon map (quadratic map)

H0(p) = p2

2
, V (q) = aq − q3

3
(6)

where a represents a nonlinear parameter. This system can be viewed as a model representing
the process of dissociation through a potential barrier, and is suitable for the study of tunneling.
An affine change of variables (q, p) = (y −1, y −x) transforms the classical map of the form
(2) into a canonical form of the Hénon map

f : (xn, yn) �−→ (
yn, y

2
n + c − xn

)
(7)

where c = 1 − a.
The Hénon map is known as the lowest degree polynomial diffeomorphism generating

nontrivial dynamics [25, 26]. In particular, the study of its complexified version has made
great progress in the last decade [29–32]. Mathematical theory of complex classical dynamics
in more than one dimension has been developed only for the Hénon family at present. Our
rigorous statements presented in part II will be based on such results, and so are limited only
to the Hénon map. However, numerical observations shown below strongly imply that the
claims derived in the Hénon map are generalizable to other systems such as the standard map
and its modified version as well.

2.3. The quantum propagator in the time domain and its semiclassical approximation

A standard procedure for describing the quantum mechanics of an area-preserving map
expresses the time evolution unitary operator in the discretized Feynman path integral form.
The one-step unitary operator is given as

Û = exp

{
− i

h̄
H0(p)

}
exp

{
− i

h̄
V (q)

}
. (8)

A general formulation of time-domain semiclassics is possible for arbitrary initial states |α〉
and final states |β〉, but we here choose |α〉 and |β〉 as the momentum eigenstates because it
is most simple and allows intuitive understanding. An alternative choice of |α〉 and |β〉 will
also be made in the case of the Hénon map. The semiclassical formulation for more general
choice for |α〉 and |β〉 will be presented in appendix A.
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The n-step quantum propagator for the initial state p0 = α and final state pn = β is
expressed as

Kn(α, β) = 〈β|Ûn|α〉 =
∫

· · ·
∫ ∏

j

dqj

∏
j

dpj exp
[ i

h̄
S({qj }, {pj })

]
, (9)

where S({qj }, {pj }) denotes the action functional along each path

S({qj }, {pj }) =
n∑

j=1

[
H0(pj ) + V (qj−1) + qj−1(pj − pj−1)

]
. (10)

The square modulus |〈β|Un|α〉|2 provides the transition probability for transition from an
initial state |α〉 to a final state |β〉.

In the following, we will show how to extend the formulation to include complex
trajectories. As is the case of the formulation of full quantum mechanics, the p-representation
is used here for the sake of simplicity, but analogous extension to other representations is
straightforward (see also appendix A). The semiclassical approximation is to evaluate the
multiple integral (9) by the method of stationary phase, the condition of which is given by

∂S({qj }, {pj })
∂qj

= 0,
∂S({qj }, {pj })

∂pj

= 0. (11)

It is easy to show that the stationary condition is equivalent to the classical mapping rule (2).
This is nothing more than the discretized version of the principle of minimum (extremum)
action under the constraint that the initial and final momentums are fixed.

The resulting formula which we hereafter call the semiclassical propagator is just a
discretized version of the Van Vleck–Gutzwiller propagator:

Ksc
n (α, β) =

∑
�

A(�)
n (α, β) exp

{
i

h̄
S(�)

n (α, β) + iμ(�) π

2

}
. (12)

The amplitude factor A(�)
n (α, β) and the classical action S(�)

n (α, β) are respectively given as

A(�)
n (α, β) =

[
2πh̄

(
∂pn(q0, p0)

∂q0

)]−1/2

=
[

2πh̄

(
∂2S(�)

n (α, β)

∂α∂β

)]−1/2

, (13)

S(�)
n (α, β) = S

({
p

(�)
j

}
,
{
q

(�)
j

})
. (14)

Note that
∣∣A(�)

n (α, β)
∣∣ ∼ ‖Dgn(p, q)‖− 1

2 . The suffix � distinguishes different classical orbits
each of which satisfies the classical mapping rule (2) with the fixed initial and final boundary
conditions p

(�)
0 = α and p(�)

n = β. μ� denotes the Maslov index and the amplitude factor
can also be expressed using the monodoromy matrix for the one-step classical map. Note that
S(�)

n (α, β) is the generating function and should satisfy the relations

q0 = ∂S(�)
n (α, β)

∂α
, qn = −∂S(�)

n (α, β)

∂β
. (15)

If the initial and final states, specified as p0 = α, pn = β, are separated by dynamical or
energetic barriers, there exist no real classical orbits � starting from the manifold p0 = α and
ending at pn = β. The corresponding semiclassical amplitude Ksc

n (α, β) vanishes and one
cannot describe any transition between these two states, although purely quantum wavepackets
may penetrate through any barriers.

A standard way to evaluate the tunneling amplitude within the framework of semiclassics
is to extend extremum paths to the complex domain. This is achieved by applying the saddle

6



J. Phys. A: Math. Theor. 42 (2009) 265101 A Shudo et al

point method to evaluate the integral (9), instead of the method of the stationary phase. The
condition to extract the saddle points is formally the same as (11). Therefore the saddle
points thus obtained also satisfy the same classical equations of motion (2) taking into account
the boundary conditions α, β ∈ R. These boundary conditions reflect that both p0 and pn

are observables in the representation under consideration. The semiclassical amplitude also
takes formally the same form as (12) but the summation should include not only real classical
solutions but also complex classical trajectories.

As a particular representation, we focus on the p-representation. In the p-representation,
including complex classical trajectories is done by analytically continuing the initial condition
of the map (q0, p0) to the complex plane. Introducing notations for the initial manifold

Aα = {(q, p) ∈ C
2 : p = α}, (16)

and the final manifold

Bβ = {(q, p) ∈ C
2 : p = β}, (17)

we have a set of the initial points which contribute to the semiclassical propagator (9)

Mα,β
n ≡ {(q0, p0) ∈ C

2 : p0 = α and pn = β} (18)

for given α, β ∈ R, where (qn, pn) = gn(q0, p0) according to the definition. Correspondingly,
it is convenient to consider the set of end points of the trajectories

Lα,β
n ≡ {(qn, pn) ∈ C

2 : p0 = α and pn = β}. (19)

Note that (q0, p0) is uniquely determined for a given (qn, pn) since g is invertible. These
expressions are available if one replaces the representation of initial and final manifolds by
other manifolds. We have only to generalize the initial and final manifolds as

Aα = {(q, p) ∈ C
2 : A(q, p) = α}, Bβ = {(q, p) ∈ C

2 : B(q, p) = β}, (20)

where A(q, p), B(q, p) are classical counterparts of suitable observables, both of which
should be given as smooth functions of dynamical variables (q, p). For example, A(q, p) =
appp2/2 + apqpq + aqqq

2/2 (action) and B(q, p) = q (position) will be often used in the
analysis of the quadratic map. The sets Mα,β

n and Lα,β
n are then defined by

Mα,β
n ≡ {(q0, p0) ∈ C

2 : A(q0, p0) = α and B(qn, pn) = β},
Lα,β

n ≡ {(qn, pn) ∈ C
2 : A(q0, p0) = α and B(qn, pn) = β}. (21)

If α and β are physical quantities to be observed, they should be real-valued.4

For the boundary conditions p0 = α and pn = β, the set Mα,β
n is expressed using the

canonically conjugate initial variable q0, which in general takes a complex value. Since pn is
a function of q0 and p0 = α, the set Mα,β

n is identified with

{(ξ, η) ∈ R
2 : pn(q0 = ξ + iη, p0 = α) = β}. (22)

For the general boundary condition given by equation (21), ξ + iη should be taken as the
variable that canonically conjugate to A(q, p).

To overview all the initial points of the trajectories contributing to the semiclassical
summation, it is also useful to scan β from −∞ to ∞. We thus introduce the set of all the
initial points landing at the real pn, which we will denote by Mα

n , and the set of end points of
the trajectories leaving Mα

n , which is denoted by Lα
n

Mα
n ≡
⋃
β∈R

Mα,β
n = {(q0, p0) ∈ C

2 : p0 = α and Im pn = 0}, (23)

4 More generally, α and/or β do not necessarily need to be real-valued. For example, if we take the coherent state
representation, they become complex.
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Lα
n ≡
⋃
β∈R

Lα,β
n = {(qn, pn) ∈ C

2 : p0 = α and Im pn = 0}. (24)

These are our basic tools for representing the set of initial points and the set of end points
which support the time-evolved wavefunctions, respectively.

We make several important remarks concerned with the problem of the Stokes
phenomenon in the use of complex semiclassics. In contrast to semiclassics on the real
domain, complex trajectories which satisfy the above boundary conditions, do not necessarily
all contribute to the semiclassical sum. The disappearance of saddle point solutions occurs as
a result of the Stokes phenomenon. The Stokes phenomenon is a discontinuous switching of
asymptotic solutions of differential equations or saddle point contributions of given integrals.
Coping with the Stokes phenomenon is unavoidable when one performs the complex WKB
analysis. There may be some optimism that one can deal with this problem in an intuitive
manner to remove unphysical divergent parts from the contribution, or that divergent parts
can be always identified easily and cut by hand. However, as found in [21], it happens that
solutions with weights which are comparable to weights of truly contributing solutions should
be removed as a consequence of Stokes phenomenon, which means that without taking into
account Stokes phenomenon properly, the semiclassical sum (12) might yield an answer which
is not meaningful. The task of extracting a set of correct contributing trajectories out of the
candidate trajectories is thus a serious issue. In particular, one cannot in principle avoid
this problem in situations where many saddle point solutions inevitably appear. Thanks to
the progress of the so-called exact WKB method [2, 33–37] which allows the treatment of
asymptotic expansions on the analytical basis via the Borel–Laplace transform, the Stokes
phenomenon has become a well-defined concept. On the basis of the exact WKB analysis,
especially newly proposed prescriptions for higher order differential equations [38, 39], we
are able to handle the Stokes phenomenon at least for the Hénon map with a finite time step
[22].

However, this issue is out of the scope of the present paper, and we will not enter into
it. Instead, in the following discussion, we apply a phenomenological approach to the Stokes
phenomenon, the validity of which has been partly confirmed in [22].

3. Chaotic tunneling and Laputa chains

Our purpose in this section is to show that there exists a specific class of complex orbits which
dominate the tunneling process in the presence of chaos. We focus our attention on the case
where tunneling proceeds from torus to the chaotic region. This case was reported in detail
in our previous papers [18, 22, 21]. In particular, we review the important results discovered
using our initial value representation.

3.1. Laputa branches

To begin with, we enumerate all the candidate complex orbits. This step looks tedious, but it
is inevitable since one does not have any prior knowledge about which complex paths make a
large contribution to the semiclassical propagator. The path search is performed by solving a
shooting problem: we search for the complex roots q0 = ξ + iη for a given pn = β, and repeat
the same procedure by changing β continuously from −∞ to +∞. Then the roots q0 = ξ + iη
move along one-dimensional curves which form the set Mα

n .
A difficulty we immediately encounter is that, unlike the path search in the real phase

space, the number of complex paths can become infinite even when the time step is finite.
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0.0 2.0

1.5

ξ/π

η

0.0

p  = + 
p  =  - 

n 
n p  =  - n 

p  = + n 

(a) (b)

Figure 1. (a) A typical example of the set Mα
n for the modified standard map with K = 1.2, pd =

5.0, ω = 3.0 and n = 14. The initial wavepacket is placed at p0 = 0. The inset is its magnification.
(b) Magnification of branches, each of which is a curved open ‘string’ with two end points.

Indeed, in the case of the standard map, the condition pn(q0, α) = β at n = 2 is explicitly
written as

β = α − V ′(ξ + iη) − V ′(ξ + iη + α − V ′(ξ + iη)). (25)

The number of complex solutions for given α and β is infinite due to the transcendental nature
of the potential function.

A typical example of the setMα
n is shown in figure 1. The setMα

n looks as if it were a cloud
composed of densely aggregated objects with arbitrarily fine scales. When it is magnified,
we recognize the fundamental element of the cloud is a curved open ‘string’ with two end
points (the end points are ±∞ in some classes of models). We call such a string-like object
a branch. From the observation of the set Mα

n , we classified the branches into three types.
The first one is just the real axis η = 0 itself and is called the real branch. The

orbit launched at the real branch moves only in the real plane, and so the range of
β = pn(q0, α) accessible by such orbits defines the support of the wavefunction reproduced
by real semiclassical contributions.

The second and the third types of branch have nonzero imaginary parts and contribute
to the tunneling component of the wavefunction. The second type is a branch that intersects
vertically with the real branch. The third type is a branch that has no intersections with the real
branch. In our previous papers [18, 19, 21], the second type was called the natural branch,
and the third type was called the Laputa branch because it floats in the imaginary domain and
reminded us of the Laputa islands in the famous story of Gullivers’ Travels.

First, we describe two basic features of the Laputa branch based on the results of analytical
considerations and extensive numerical observations. The point q

(c)
0 at which the derivative

of the final coordinate vanishes, namely,

dpn(q0, α)

dq0

∣∣∣∣
q0=q

(c)
0

= 0 (26)

is called a caustic. The two branches should intersect at a caustic because, by the definition,
Im pn(q0, α) is invariant (recall Im pn(q0, α) = 0) in the two different directions along the
branches at the intersection and equation (26) holds there, but such does not in general occur
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in the imaginary domain because the condition Im pn(q0, α) = 0 is in general incompatible
with equation (26). This means that dRe pn(q0, α)/dq0 keeps the same sign along the Laputa
branch, and β = Re pn(q0, α) is a monotonic function of q0 along it. Extensive numerical
observation for various systems reveals the additional feature that β = Re pn(q0, α) diverges
at the two endpoints of the branch. In summary, we claim that

As q0 moves along a Laputa branch � from one end to the other, β = Re p�
n(q0, α) varies

monotonically from −∞ to +∞.

Thus each Laputa branch contributes to the wavefunction with the weight∣∣�(�)
n

∣∣ = ∣∣A(�)
n

∣∣exp
{−Im S(�)

n

/
h̄
}
. (27)

It is evident that, in the tunneling problem, the non-vanishing imaginary part of action S(�)
n

controls the weight in the semiclassical limit h̄ → 0. We remark on a quite general important
feature of the imaginary action of the Laputa branch. By the definition, Im qn(q0, α) also
keeps the same sign along the Laputa branch. (Otherwise, there exists a zero of Im qn(q0, α)

on the branch, at which (qn, pn) as well as (q0, p0) = g−n(qn, pn) are both real points.) On
the other hand, thanks to the generating function property, we have the relation

dIm S(�)
n

/
dRe pn = −Im qn. (28)

Thus Im S(�)
n also varies monotonically as q0 moves along the Laputa branch. Moreover,

similarly to Re pn, extensive numerical observations suggest that Im S(�)
n also diverges at

the two ends of the branch. Taking into account the above relation between q0 and β, we
summarize the behavior of ImS(�)

n along the Laputa branch as
Im S(�)

n varies monotonically from ±∞ to ∓∞ as a function of β = Re pn.
This implies that every branch has a semi-infinite range of β in which Im S(�)

n < 0. If such
a range contributes to the semiclassical propagator, the weight measured by e−ImS/h̄ diverges
in the semiclassical limit. This is obviously unphysical and there should exist a reason for
the removal of such a range. This concerns the Stokes phenomenon and as discussed in [22],
we can see that these divergent parts are to be removed. On the other hand, the divergence
Im S(�)

n → +∞ is physically reasonable, because the tunneling probability should be null at
|β| = ∞ if n is finite.

The number of potentially contributing orbits is large, but they do not necessarily all
contribute with equal weights. If some contributions dominate the others, we need only take
into account the dominant contributions and neglect the rest. The next important step is to
find a way to identify and select the dominantly contributing complex paths.

3.2. The Laputa chain

In our previous investigations we made an important discovery that there exist characteristic
families of trajectories that make dominant contributions in chaotic tunneling. In particular,
we analyzed the role of the families of trajectories called Laputa chains [18, 19, 21].

A Laputa chain can be identified by its morphological features in the initial value plane. It
is a sequence of branches on the set Mα

n with a characteristic appearance, which distinguishes
it from other branches. It forms a serial chain-like structure connected via narrow gaps, as
shown in figures 2(a) and (b). Each figure is a magnification of a tiny region in the (ξ, η)

plane. One can easily identify a series of branches in a row in the vertical direction, looking
like a barbecue skewer. Although it may appear to be a single connected object, the branches
are actually separated by narrow gaps. The smallness of the size of the branch forming the
chain-like structure is closely related to the exponential sensitivity of trajectories leaving from
the branch. At the center of every narrow gap connecting the two adjacent branches a caustic
defined by equation (26) always exists. The narrowness of the gap reflects that the caustic is

10
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ξ

η

(a) (b) (c)

Figure 2. (a) An example of the Laputa chain for the modified standard map. The parameters and
the initial condition are the same as in figure 1 for n = 8. (b) An ideal example of the Laputa
chain for the quadratic map (a = 7). (c) A schematic model of the Laputa chain, where only three
adjacent branches are shown. The branches are connected by caustics indicated by X, and every
branch is composed of three parts A, B and C. The series of the part B of every branch in the
shaded region is regarded as a linked object and is called the ‘trunk chain’ (see the text).

quasi-real, that is, the trajectory leaving from it lands very close to the real phase plane. The
above basic features are described in appendix B in some detail.

The significant role of the Laputa chain becomes apparent when we observe the
semiclassical wavefunction obtained by including only branches constituting the Laputa chain.
As shown in figure 3, the contributions from the branches forming the Laputa chain have the
most dominant weight in the chaotic regime. Close to the classically accessible range of
β = Re pn the natural branch dominates the tunneling component, but its contribution drops
quickly as β moves away from the classically accessible range, and the most dominant
contribution eventually comes from the Laputa chain. Figure 3 shows a typical example
exhibiting such a transition process.

Each branch constituting the Laputa chain has a characteristic shape composed of three
distinct parts. We denote them as A, B and C, as depicted in figure 2(b). The segments B
are aligned to form a ‘necklace’ being connected by the caustics. Such a necklace is called the
trunk chain hereafter because it can be regarded as the main part of the Laputa chain, and a
segment B is referred to as a trunk part, whereas the transversal parts A and C are each called
a side part. The segment B is characterized as a segment bounded by the quasi-real caustics at
both ends. This fact implies that the segment B is also quasi-real. Indeed, the trajectory leaving
from B lands very close to the real plane, namely, |Im qn(q0)| � 1. Quantitative features of
the closeness to the real plane will be discussed later in section 3. All the above-mentioned
local features are key elements in the phenomenological description of the Laputa chain, as
discussed in detail in [18].

We discuss here that Laputa branches are responsible for the formation of a characteristic
structure in the tunneling tail of wavefunction. The segment B is quasi-real, but, as has
been pointed out in section 2.5, Im qn which keeps the same sign increases rapidly in its
magnitude when q0 comes into A or C and finally reaches the endpoint. This behavior is
schematically shown in figure 4. Recall that β = Re pn varies monotonically as q0 moves
along a branch. Then, the part B is mapped to a bounded range of β in which |Im qn| is very
small. Consequently, Im Sn keeps almost the same magnitude from equation (28) in such a
range, and thus the semiclassical wavefunction in this range forms a plateau.

11
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Figure 3. (a) Evidence showing that the Laputa chain dominates the rest of the branches. The
modified standard map with K = 1.2, pd = 5.0, ω = 3.0 is used. The time step is n = 7 and
the initial wavepacket is placed at p0 = 0. Semiclassical contributions from the Laputa chain
(red), a natural branch (yellow) and branches not forming the Laputa branches (blue). Shaded
area represents classically regular region |p| = |β| < pd (see equation (4)) in which the initial
manifold (16) is taken. The dotted portions of the contributions from the Laputa chain are the parts
that should be removed as a result of the Stokes phenomenon. (b) The Poincaré map on the real
phase space. The shaded region corresponds to the shaded area of (a) and the initial manifold Aα

taken in the classically regular region is indicated by the bold line.

We summarize characteristics of the Laputa chain:

Numerical observation (i)

A Laputa chain is a series of Laputa branches connected by quasi-real caustics. ‘Quasi-real’
means that the trajectory leaving from the concerned point lands very close to the real plane.
The dominantly contributing part of the Laputa chain, which is called the turnk chain, is
quasi-real and it contributes to the wavefunction with almost the same magnitude, which is
observed as the plateau of the tunneling wavefunction characteristic in the chaotic range.

Local analysis around the caustic predicts that a pair of q0 giving the same β = Re pn

face each other across the caustic (see equation (B.3)). Therefore, if one follows a trunk chain
from the segment B of a branch to that of an adjacent branch jumping over the gap, as is
illustrated by the arrows in figure 2(c), both d Re pn/dq0 = dβ/dq0 and Impn change their
signs (this occurs when a caustic is passed; see [18]), the output Re pn(q0) = β goes back
and forth tracing plateaus as indicated in the arrows in figure 4. In other words, for a given β

on the plateau, a number of B components of the trunk chain contribute to the semiclassical
wavefunction. Strictly speaking, Im S(�)

n at neighboring B s do not take the same values,
differing slightly. However, due to the narrowness of the gap (see figure 4), the discrepancy is
very small. As a result, all the constituent Bs contribute to the wavefunction with almost the
same weights, and the summed-up wavefunction shows an interference pattern on the plateau
range, which is just a feature of the chaotic tunneling tail (see also [18]).

The discovery of the Laputa chain showed that the chaotic tunneling process cannot be
described only by a single trajectory, such as an instanton path with a minimal imaginary
action and an overwhelming weight, nor can it be described by a small number of dominant
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(a)

(b)

Figure 4. (a) Schematic behavior of β versus Imqn in the three adjacent branches shown in
figure 2(c). Imqn takes very small value in the trunk part B of each branch. The arrows indicate
the directions corresponding to the movement of the input q0 = ξ + iη along the trunk chain in
figure 2(c). (b) The imaginary part of the action ImS

(�)
n of the three adjacent branches as a function

of β. It forms a plateau in the bounded range of β, which corresponds to the quasi-real trunk part
B of a branch shown in (a).

trajectories. Rather, a large number of trajectories are needed to describe chaotic tunneling. It
is important to note that the number of the Laputa chains is not just one: there are many chains
at different spots in the (ξ, η) plane. All the constituent branches in the same chain contribute
almost equally to the semiclassical propagator, but contributions from different chains may
be different. It is not easy to pick up the most predominant chain at a given β = pn without
evaluating their Im S(�)

n . For example, we do not have any definite criterion to single out the
most dominant chain based on features such as location in the (ξ, η) plane or shape.

The number of branches in a Laputa chain increases exponentially with n. In the next
section we consider how the contributing branches behave in the asymptotic limit.

4. Asymptotic properties of Laputa chains

As explained in subsection 3.2, a Laputa chain is a family of branches which give dominant
contributions necessary for the semiclassical sum to reproduce the quantum wavefunction. In
this sense, the Laputa chain is a key object for the chaotic tunneling problem. However, there
is no apparent correspondence between the Laputa chain and other known classical dynamical
structures. For example, in the energy-domain semiclassical approach, the quantum energy
spectra are connected with invariant sets of classical dynamics i.e., the set of the periodic
orbits, via trace formula such as the Gutzwiller trace formula [27]. From this point of view,
it is important to consider further the correspondence between Laputa chains and generic
dynamical concepts. This is our motivation to investigate the asymptotic nature of the Laputa
chains in this section.

4.1. Morphological evolution of the Laputa chain

Laputa chains are objects defined at each step n. With increase of n, every branch of the chain
splits into finer branches, and the trunk chain shoots out branches of higher generation. After
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Figure 5. (a) Evolution of the Laputa chain when the horseshoe is realized in the real plane
(a = 8.0) at n = 4(blue), n = 5(purple) and n = 6(red) are superposed. (b) Schematic
illustration: each branch of the Laputa chain splits into two branches at every step.

sufficiently large n, one can recognize a tendency that the whole chains converge toward a
certain asymptotic structure. This suggests that a Laputa chain has an asymptotic limit. Below
we present two numerical observations, which characterize the asymptotic nature of Laputa
chains.

Numerical observation (ii)

Every branch in the Laputa chain splits in each time step. Such splittings result in the
bifurcation of the Laputa chain into a branched structure with higher order chains as the
branches. The branches also further bifurcates into higher order branches, and in the limit of
n → ∞, the trunk part of the branched Laputa chain, which forms a branched trunk chain,
morphologically converges to form a self-similar structure.

The segments B are separated by gaps and form the trunk chain. As n increases, the
segments B further split into finer segments, but they still form a trunk chain. Furthermore
the location of the trunk chain becomes fixed as n increases. This fixing of position is a
signature of convergence, but especially in the case of non-hyperboic cases, the manner of
convergence is neither monotonous nor homogeneous, rather it depends on the position on the
trunk chain.

Uniformly hyperbolic cases

In order to show typical features of Laputa chains, we examine the ideal situation realized in
the strong nonlinear limit of the Hénon map i.e., c � −1(a � 1), in which an ideal horseshoe
appears in the real plane and there exists no quasi-periodic region. It is a typical uniformly
hyperbolic situation, where bounded motions on real phase space occur only on the hyperbolic
set.

In figure 5, we show how the Laputa chain evolves with time in the horseshoe case.
In every step, each segment B splits into two parts and new paired branches appear. As is
schematically shown in figure 5(b), the number of branches constituting the chain doubles at
every step.

Let Tn be a trunk chain at the nth step. A gap is created when every segment B of Tn

splits into two and a new caustic is born there. The location of new Bs in Tn+1 are shifted
slightly from that of the old Bs in the direction transversal to the trunk chain. However, as time
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Figure 6. The amount of shift of a trunk part, which is measured by |q(n+1)
0 − q
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0 |. The quadratic

map with a = 8.0 is used.

proceeds, the amount of shift rapidly decreases and the transversal shift of the trunk chain is
soon frozen. The freezing process can quantitatively be checked by observing the amount of
shift of the trunk part, which is measured by

∣∣q(n+1)
0 − q

(n)
0

∣∣ where q
(n)
0 denotes the intersection

of Tn and some appropriately taken fixed line.
In figure 6, we see nice exponential convergence

lim
n→∞

∣∣q(n+1)
0 − q

(n)
0

∣∣ ∼ e−const. n. (29)

Thus there should exist a limit of q
(n)
0 as n → ∞. The total length of Tn decreases, but the

converged set is by no means empty; it is densely aggregated and forms a Cantor set.

Non-hyperbolic cases

Physically realistic systems are not uniformly hyperbolic and the real phase space is a mixture
of chaotic and quasi-periodic components. Even in such a case, the splitting of the branches
forming the trunk chain occurs, and the location of the split trunk chain also becomes frozen as
is observed in the horseshoe case. However, the process is more complicated: the number of
splitting is not uniform but changes inhomogeneously depending on both n and the site of the
trunk chain. For example, a certain segment B, breaks into two for the subsequent five steps,
but another B splits into three for the subsequent four steps. Nevertheless, it is still common
that the split trunk chains tend eventually to an asymptotic structure in the limit of n → ∞.

Furthermore, the splitting into smaller branches occurs on the side part as well as on the
trunk part. Once the side part splits, the side part can be regarded as the trunk chain of a new
generation. The location of the new trunk chain is frozen in a similar manner to that of the
trunk chain. The process repeats successively and trunk chains of new generation are born
transversely to the chain of the previous generation, as schematically shown in figure 7(c).
Thus the limit set is no longer a one-dimensionally arranged sequence, but forms a dendrite
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(a) (b) (c)

Figure 7. The Laputa chain in the non-hyperbolic case. (a) A chain observed at n = 23. (b) The
corresponding chain at n = 26. The modified standard map with p0 = 0, K = 1.2, pd = 5 and
ω = 1 is used. Splitting into finer branches occurs along the side part in the same way as along
the trunk part. (c) A schematic model for the fully evolved Laputa chain.

pattern with a self-similar structure composed of trunk chains of different generations. Note
that the horseshoe limit shown in figure 5 is exceptional in this sense.

4.2. Asymptotic behavior of trajectories starting from Laputa chains

Most branches do not form a Laputa chain, and the end points (qn, pn) of the trajectory leaving
ordinary branches in general are far away from the real plane, although the boundary condition
Im pn = 0 is imposed, which means that |Im qn| � 1. In contrast, trajectories launched at
the trunk part of Laputa chain end at points very close to the real plane. This is a remarkable
feature characterizing the Laputa chain. We here investigate how such a feature is formed with
the increase in time steps, paying particular attention to the time evolution of every trajectory.
The main result is summarized as below:

Numerical observation (iii)

The itinerary of the trajectories launched from the morphologically converging trunk chain also
converges in the limit of n → ∞. In particular, in the final stage they approach exponentially
to the real plane, which means that the imaginary part of action Im Sn along the trajectory
converges absolutely as n → ∞.

We are interested not only in the trajectory at a fixed n but also in the asymptotic behavior
of the trajectory itself. Figure 8 plots the distance from the real plane as a function of n for
the trajectories starting at the points taken on a trunk chain Tn. The horseshoe limit and mixed
systems are compared. In either case, we can see that the orbit approaches the real plane
exponentially in the final stage as is stressed in section 3. With increase of n, the final stage in
which the exponential approach is observed is prolonged, and the distance from the real plane
at the end point of the trajectory decreases exponetially with n. Moreover, figure 8 implies
that there is a strong tendency that the itinerary of every trajectory converges to a certain limit
as n → ∞. More precisely, for arbitrary chosen finite step n0(> 1), the trajectory (qj , pj )

from j = 0 to j = n0 converges to a limit if n → ∞ is taken.
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Figure 8. The distance between the real plane and the trajectories launched at the trunks Tn of
increasing n is shown as a function of the step j (0 � j � n). (a) The horseshoe case, where
n = 4, 5 and 6 and (b) the case of mixed phase space, where n = 20, 30 and 40. The quadratic
map with a = 7 for (a) and a = 0.64 for (b) is used. As n increases, the curves themselves
converge so rapidly to an asymptotic limit that they are overlapped and are not distinguishable in
this precision. This indicates that the phase space itinerary of the trajectory from Tn converges
very rapidly with n.

This fact strongly suggests that Im S(�)
n also converges exponentially to a certain value in

the limit n → ∞. To see this more closely, we focus our attention on the element of the action
defined by

s(qk−1, pk, pk−1) ≡ H0(pk) + V (qk−1) + qk−1(pk − pk−1). (30)

Summation of s(qk−1, pk, pk−1) over k yields the action S(�)
n . The rapid approach to the real

plane implies that the orbit almost obeys the real phase space dynamics in its late stage, and
therefore Im s(qk−1, pk, pk−1) also tends quickly to zero. Indeed, we can easily show that, if
the dynamics on the real phase space is bounded, there exist certain constants C1, C2, C3(> 0)

such that

|Im s(qk−1, pk, pk−1)| < C1|Im qk−1| + C2|Im pk−1| + C3|Im pk| (31)

for sufficiently small |Im qk−1| and |Impk|, |Im pk−1|. As shown above, the trajectories leaving
the series of trunk chains Tn(n = 1, 2, . . .) also converge to a fixed trajectory which approaches
rapidly to the real plane. Therefore, Im S(�)

n along such series of trajectories also converges to
a certain definite value in the limit n → ∞. We have to note, on the other hand, that Re S(�)

n

does not converge because in the late stage the orbit is almost very close to the real phase
space. Therefore, Re S(�)

n depends sensitively on the final β = pn. In this way, Im S(�)
n for the

trunk chain remains finite even in the limit of n → ∞. Branches other than those contained
in Laputa chains exhibit no signature of convergence. Im S(�)

n s take much larger values than
those for the trunk chain, and eventually diverge as n → ∞. There are two possibilities;
Im S(�)

n → +∞ and Im S(�)
n → −∞. The contribution of the former case is negligible as

compared to that with finite Im S(�)
n , and the latter trajectories should be removed from the

final contribution due to the Stokes phenomenon. This is the main reason why the trunk part
of the Laputa chain is the fundamental contributor to the semiclassical propagator.

To summarize this sections and the previous describing asymptotic features of the Laputa
chain, we propose here an empirical definition of the Laputa chain on the basis of numerical
observations presented so far. Our earlier characterization of the Laputa chain was based only

17



J. Phys. A: Math. Theor. 42 (2009) 265101 A Shudo et al

on morphological features in finite steps [18, 19, 21]. However, there is some ambiguity in its
identification, and insufficient for filtering the Laputa chains out of an enormous number of
branches forming the set Mα

n . From the numerical observations in previous subsections, we
can capture such specific structures especially in terms of their asymptotic nature. Therefore,
it is reasonable to define or specify Laputa chains as the subsets of Mα

n having the following
properties.

(1) They asymptotically converge in shape in the initial value plane.
(2) The orbits leaving them approaches the real plane very rapidly.

We can further replace (2) by the property more crucial to semiclassics as
(2)′ The imaginary part of action along the trajectories leaving them converge absolutely.

We propose (1) plus (2) or (1) plus (2’) as a more specific and an empirical definition of
Laputa chains. We particularly remark that by condition (2) or (2’) we filter the trunk part of
the chain out of the whole chain, and so we identify the trunk chain with the Laputa chain in
the asymptotic limit, which is just mentioned in the numerical observation (iii).

4.3. Extraordinary behavior of trajectories starting from Laputa chains

In this subsection, we present a general feature of dynamics in complex phase space close to
the real chaotic region in order to stress that the characteristics of the trajectories launched
at the Laputa chains mentioned above are quite unusual. To simplify the situation, we again
suppose that the chaotic region is bounded by KAM curves as is the case in the standard or
modified standard map.

Let us take an arbitrary initial point P0 in the complex domain but very close to the real
chaotic sea, and also take another point P ′

0 which is very close to P0 and located on the real
chaotic sea. The distance between the trajectories leaving P0 and P ′

0 explodes exponentially
with time because of the instability of the chaotic orbits. Since the trajectory from P ′

0 is
confined in real phase space, the instability means that almost all trajectories starting close to
the real chaotic seas are repelled from the real plane exponentially.

This argument holds only when the initial point P0 is sufficiently close to the real plane,
and it cannot predict any more about the fate of the repelled trajectories. However, as is shown
in figure 9, we can numerically show that almost all the repelled trajectories go further away
from the real plane and eventually blow up to infinity. Thus we may say that chaos on the real
phase space repels the trajectories in the complex phase space. Such a feature is common in
the kicked rotor systems that we have examined. This argument explains why the trajectories
launched at ‘ordinary’ branches end at points far from the real plane although the imposed
boundary condition requires pn ∈ R. It is then seemingly strange that the trajectories starting
at the Laputa trunk are attracted by the real chaotic sea and not repelled from it however large
n may be. One hypothesis which can account for this is that the trajectories are on or very
close to the complexified stable manifolds of the saddles in the chaotic sea. If this is indeed
the case, the complex trajectories starting at the Laputa chain will almost follow the dynamics
on the real chaotic region, and never explode to infinity even in the limit of n → ∞ since
we here assume the chaotic region is bounded. We therefore reach the following important
conjecture: the Laputa trunk chain is a set of initial points whose trajectories are bounded and
cannot go to infinity.

4.4. Laputa chains and Julia sets

The Julia set, which plays a central role in the theory of complex dynamical systems, is
specified as the set that exactly possesses such a property. More precisely, the forward Julia
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Figure 9. (a) The distance between the real plane and the trajectories that are initially located
very close to the real plane. (b) The corresponding Poincaré map in R

2. Ten initial points, which
are taken inside the chaotic sea, are sampled very close to the thick line segment in (b). The
quadratic map with a = 0.644 is used. The distance initially increases exponentially then explodes
superexponentially in the limit of n → ∞. The former behavior is common in any nonlinear maps,
but the latter one is peculiar to the quadratic map.

set J + is defined as the boundary of the set K+ of points whose forward orbits of a given map
g remain in a finite region [28]

K+ = {(q, p) ∈ C
2 : {gn(q, p)}n>0 is bounded} (32)

and

J + = ∂K+. (33)

If the map is invertible, both forward and backward iterations can be considered, for which we
similarly define K− as the set of points in C

2 whose backward orbits are bounded. J− is also
defined as the boundary of K− which we call the backward Julia set. The set J ≡ J + ∩ J−

is called the Julia set of g. On the Julia set J , the orbits have sensitive dependence on initial
conditions, meaning that the chaotic motion is realized on it.

We will present numerical evidence that there exists a close connection between the Julia
set and the Laputa chain. Since J± = ∂K±, it is not easy to single out the points only
contained in J±, we will compare the Laputa chain with the forward filled-in Julia set K+.
However, we note that further numerical studies, which will be done in our accompanying
paper, strongly suggest that J± = K±. (See conjecture 3.3 of part II.)

Instead of making a direct observation of K+ in C
2, we here take the slice of K+ in the

initial plane Aα = {(q, p) ∈ C
2 : p0 = α} and compare the slice K+ ∩ Aα with the set Mα

n .
The slice of K+ is numerically obtained by plotting the initial points whose trajectories remain
in a ball of C

2 with a certain finite radius.
In figures 10 (a) and (c), we show the set of initial points staying in a finite region up to

the nth step

K+
n = {(qn, pn) ∈ C

2 :
√∣∣p2

n + q2
n

∣∣ < R
}

(34)

sliced by the initial plane, namely, K+
n ∩Aα . On the other hand, in figures 10(b) and (d) all the

Laputa branches are displayed. Figures 10(a) and (c) show how small a fraction of the initial
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(a) (b)

(c) (d)

Figure 10. Slice of the filled-in Julia set K+ for (a) the standard (K = 1.5) and (c) modified
standard map (K = 1.2, pd = 5.0 and ω = 1.0). They are compared with the Laputa trunk
chains shown by black lines in (b) (standard map) and (d) (modified standard map ), respectively.
The black lines are extracted out of the whole set (colored by green) according to the procedure
mentioned in the text. The remaining Laputa branches are colored in green.

points remains in a finite region. This fact is closely connected with the fact that almost all
the complex trajectories are repelled by the real plane and escape to infinity.

We pick up Laputa chains out of an enormous number of Laputa branches in Mα
n by

using the definition (1) plus (2) or (1) plus (2)′ presented in subsection 4.2. However, it is
not easy to treat morphological convergence numerically, and so we examine whether the
Laputa chains can be filtered by adopting the second conditions (2) or (2)′ only. First, let us
consider a practical method to filter the initial points satisfying the condition (2). As described
in subsection 4.5, if the trajectory does not approach exponentially to the real plane, it is
exponentially repelled by the real plane. Hence, we can identify the trajectory approaching
the real plane with the one whose end points have the distance from the real plane, i.e.,
|Im qn|, less than a certain small enough threshold value qth, where the threshold value qth is
chosen appropriately. Similarly, we can identify the initial point of the trajectory satisfying
the condition (2)′ with the one whose trajectory has imaginary part of action |Im S(�)

n | less than
a certain finite value Sth.
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These two criteria work quite well: figures 10(b) and (d) show the subset of Laputa
branches filtered out by applying the two criteria. Almost all of the points filling the (ξ, η)-
plane are removed, and one finds that only the sets having the morphological feature peculiar
to the trunk chain remain, and the remaining subsets coincide excellently with the set K+

n . In
this example the two conditions |Im qn| < qth and

∣∣Im S(�)
n

∣∣ < Sth are imposed to make sure
the selection, but in practice either of the two criteria is sufficient for extracting the Laputa
chains out of Mα

n , which means (2) and (2)′ plays an equivalent role.

5. Concluding remarks

As was reported in our previous papers [18, 21, 22], the initial points of complex trajectories
dominating chaotic tunneling form particular sets which we called Laputa chains. These have
a characteristic chain shape on the initial value plane. The present paper was devoted to
providing more explicit characterizations of Laputa chains common to area-preserving maps,
and in particular to clarifying the asymptotic nature of Laputa chains. What is important about
the trajectories launched at a Laputa chain is that they approach exponentially to the real plane.
Further, Laputa chains exhibit a strong tendency of convergence to asymptotic forms, and the
imaginary part of the action along trajectories, which dominates the tunneling probability, also
converges to finite values. Numerically confirmed features of Laputa chains were summarized
as numerical observations (i)–(iii) in the text.

On the basis of (ii) and (iii), namely morphological convergency and the quasi-real-
valuedness of the Laputa chains, we proposed an empirical definition of the Laputa chain.
This definition will be developed into a mathematically more rigorous definition in the
accompanying paper. These features are common to all the map systems that we explored in
this paper, and so they are expected to be universal.

Chaotic regions in the real phase space in general repel the orbits close to the real plane.
Nevertheless our observations show that the orbits starting at Laputa chains are destined for the
real plane. This looks very peculiar. A plausible explanation for this is that in the asymptotic
limit, the orbits starting from Laputa chains will stay on or very close to the complexified
stable manifolds of unstable periodic orbits which are rich in the chaotic region in the real
plane. We note that the key role of complexified stable manifolds has been confirmed even in
a much more simple situation of two-dimensional barrier tunneling, where there is no chaos
on the real plane but there exists only a single saddle as a dividing orbit [24, 21]. In this
simple situation it can analytically be shown that the plateau structure characteristic in the
tunneling wavefunction (see numerical observation (i) and figure 4) can directly be observed
as a spectral feature of tunneling particles [40]. To the authors’ knowledge, the role of the
complexified stable manifold in multi-dimensional tunneling was first pointed out in [19, 20]
for chaotic systems and in [24] for a non-chaotic system.

On the other hand, it is known that the stable manifolds of saddles approximate very well
the (filled-in) forward Julia set K+ namely, the set of initial points from which the trajectories in
the forward iteration do not escape to infinity [43]. It is, therefore, quite natural to conjecture
that the Laputa chains are closely related to K+, and we indeed show numerical evidence
exhibiting that the Laputa chain is well approximated by K+, which typically exhibits a fractal
structure.

The study of complex dynamical systems, initiated in classical papers by Julia and
Fatou [45, 46], has made great progress in the last two decades [41–44]. In contrast to the
mathematical study of real dynamical systems, which was driven by physical phenomena in
celestial mechanics and statistical physics, the study of complex dynamical systems has been
mainly motivated by purely mathematical interest. However, our findings show that results
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from the theory of complex dynamical systems may be very relevant to physical phenomena,
that is quantum tunneling.

We know that, both in integrable and nonintegrable limits, the invariant sets, the KAM
curves in the former limit and unstable periodic orbits in the latter limit play central roles
in developing the energy-domain semiclassical theory. However, the invariant sets so far
considered in semiclassics have been confined to the real phase space. In order to incorporate
the tunneling effect, it is quite natural that the relevant invariant sets should be extended to
invariant sets in the fully complex phase space, especially Julia sets

The close connection between Julia sets and Laputa chains will be the focus of the next
paper, where we provide more rigorous statements and analysis of the conjecture relating
the mathematical theory of Julia sets in multi-dimensional complex dynamical systems and
quantum tunneling in non-integrable systems. Detailed analyses developed there will lead us
to a general hypothesis elucidating the nature of chaotic tunneling trajectories.
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Appendix A. Time-domain semiclassical propagator for general representations

We derive a semiclassical formula for the n-step propagator when arbitrary quantized invariant
curves are taken as the initial and final manifolds. Here we confine ourselves to the case
where the invariant curves are described by action-angle variables. We use the momentum
representation of semiclassical propagator (12)

Ksc
n (p, p′) =

∑
�

A(�)
n (p, p′) exp

{
i
S(�)

n (p, p′)
h̄

+ iμ(�) π

2

}
, (A.1)

with

S(�)
n (p, p′) =

n∑
j=1

[
H0
(
p

(�)
j

)
+ V
(
q

(�)
j−1

)
+ q

(�)
j−1

(
p

(�)
j − p

(�)
j−1

)]
, (A.2)

A(�)
n (p, p′) =

[
∂2S(�)

n (p, p′)
∂p∂p′

/
2πh̄

]1/2

, (A.3)

where p, p′ are used, instead of α, β, for labeling the initial and final momenta, respectively.
S(�)

n and A(�)
n are computed for each trajectory

(
q

(�)
j , p

(�)
j

)
(0 � j � n), which leaves p and

reaches p′ at 0- and n-steps, respectively, obeying the mapping rule (2). Below we drop the
superscript (�) if there is no confusion.

Here we suppose that the initial and final quantum states are both quantized curves, which
are parameterized by (ϕ′, I ′), respectively, in the classical limit. By taking actions as the
parameters α and β specifying the initial and final manifolds introduced by equation (20), they
are

Aα = {(q, p) : q = qi(I = α, ϕ), p = pi(I = α, ϕ), ϕ ∈ C}, (A.4)
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Bβ = {(q, p) : q = qf (I ′ = β, ϕ′), p = pf (I ′ = β, ϕ′), ϕ′ ∈ C}, (A.5)

where qi,f and pi,f are 2π periodic functions of ϕ and of ϕ′. A typical choice of initial
manifold is to take the invariant curve of the linearized map around an elliptic fixed point of
the map (2).

Let |α〉 and |β〉 be the action eigenstates corresponding to the initial and final manifolds.
Then its semiclassical momentum representation is expressed in terms of generating functions

〈p|α〉 =
√

− ∂2si(p, α)

∂p∂α

/
2π ih̄ exp{isi(p, α)/h̄}, (A.6)

〈p′|β〉 =
√

− ∂2sf (p′, β)

∂p′∂β

/
2π ih̄ exp

{
isf (p′, β)/h̄

}
, (A.7)

where si,f are generating functions, and the subscripts i and f are used below to indicate the
initial and final manifolds, respectively.

Then the final semiclassical propagator connecting Aα and Bβ is computed simply by
integrating over the intermediate variables p and p′

K̂sc
n (α, β) =

∫ ∫
dp′ dp〈β|p′〉Ksc

n (p′, p)〈p|α〉. (A.8)

The integrations over p and p′ are done using the ordinary saddle point approximation,
deforming the integration paths so as to pass through the saddle points. First, the saddle points
are determined by imposing the extremum condition on the total action

Stot(p, p′) = −sf (β, p′) + Sn(p, p′) + si(α, p), (A.9)

namely, ∂Stot/∂p = ∂Stot/∂p
′ = 0, which yields the new boundary conditions

∂Sn

∂p
− qi = q(p, p′) − qi(α, p) = 0,

∂Sn

∂p′ + qf = −q ′(p, p′) + qf (β, p′) = 0. (A.10)

Here we used the basic relations of the generating function Sn(p, p′), si(α, p) and sf (β, p′),
i.e., equation (15) and

∂si(α, p)/∂p = −q, ∂si(α, p)/∂α = ϕ,

∂sf (β, p′)/∂p′ = −q ′, ∂sf (β, p′)/∂β = ϕ′, (A.11)

respectively. Note that the coordinate q (or q ′) is regarded as a function of α (or β) and p,
which is represented explicitly as qi(α, p)( or qf (β, p)). Equations (A.10) require that the
trajectory connecting p and p′ should have the coordinates on the initial and final manifolds
Aα and Bβ at initial and final steps, respectively. Thus all the trajectories now introduced
are functions of α and β. Let the �th solutions of equations (A.10) be p = p(�)(α, β) and
p′ = p′(�)(α, β). Expanding Stot around p(�) and p′(�) up to the second order, and integrating
over p and p′, we obtain

K̂(sc)
n (α, β) =

∑
�

Â(�)
n (α, β) exp

{
i
Ŝ(�)

n (α, β)

h̄
+ iμ(�) π

2

}
, (A.12)

where the new phase factor and amplitude factors are

Ŝ(�)
n (α, β) = si(α, p(�)) + Sn(p

(�), p′(�)) − sf (β, p′(�)), (A.13)
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Â(�)
n (α, β) = An(p

(�), p′(�))

√
∂qf (β, p′(�))/∂β

detC∂pi(α, ϕ)/∂ϕ
, (A.14)

with C being the 2× 2 matrix ((�) is omitted)

C =
(

∂2Stot(p, p′)/∂p2 ∂2Stot(p, p′)/∂p∂p′

∂2Stot(p, p′)/∂p∂p′ ∂2Stot(p, p′)/∂p2

)
. (A.15)

In the above derivation we have used equation (A.11). Substituting p = p(α, β) and
p′ = p′(α, β) into equation (A.10), and differentiating it by β with fixing α, we obtain

detC = (∂2Sn(p, p′)/∂p∂p′)(∂qf (p′, β)/∂β)

∂p(α, β)/∂β
. (A.16)

Substituting this into equation (A.14) and using equation (A.3), the final expression for the
amplitude factor is

Â(�)
n (α, β) =

{∂β(α, ϕ)

∂ϕ
2πh̄
}−1/2

=
{
−∂α(β, ϕ′)

∂ϕ′ 2πh̄
}−1/2

=
√√√√ ∂2Ŝ

(�)
n (α, β)

∂α∂β

/
2πh̄.

(A.17)

The last equation immediately follows from the relation confirming that the new action is a
generating function:

∂Ŝn(α, β)/∂α = ϕ, ∂Ŝn(α, β)/∂β = −ϕ′, (A.18)

which are derived by differentiating equation (A.13) by α and β and making use of the
extremum condition (A.10).

We often use the Cartesian coordinate q as the final manifold. In this choice Bβ =
{(q, p) : q = β}, and action sf should be such that

sf (p, β) = −pβ, (A.19)

which immediately follows from 〈p|β〉 = 〈p|q〉 = √−1/2πh̄ i e−ipq/h̄. For this choice ϕ′ in
equation (A.6) should be replaced by −p′, and relation (A.18) in this case should be read as

∂Ŝn(α, β)/∂α = ϕ ∂Ŝn(α, β)/∂β = p′. (A.20)

The action-coordinate representation of the semiclassical propagator is used for the tunneling
problem of the quadratic map (Hénon map).

Let (q0, p0) and (qn, pn) be the initial and final points of the trajectory, then equation
(A.10) means that we now have to solve the boundary value problem by replacing (q, p) →
(q0, p0) and (q ′, p′) → (qn, pn) in equation (A.10), namely by setting

q0 = qi(α, p0), qn(q0, p0) = qf (β, pn(q0, p0)),

where (qn, pn) are now looked on as the nth iterate of (q0, p0). This condition just requires
that (q0, p0) and (qn, pn) are in Aα and in Bβ , respectively. Therefore, the initial condition
(q0, p0) ∈ Aα is parameterized as q0 = qi(α, ϕ), p0 = pi(α, ϕ) by using the action-angle
variables and the nth iterate of (q0, p0) can be thought of as a function of ϕ alone, which is
denoted by (qn(ϕ), pn(ϕ)). Setting ϕ = ξ + iη, the set-M should be defined by

Mα,β
n = {(ξ, η) ∈ R

2 : (qn(ξ + iη), pn(ξ + iη)) ∈ Bβ

}
, (A.21)

and

Mα
n =
⋃
β∈R

Mα,β
n . (A.22)

The complexified angle variable ϕ = ξ + iη now plays the role of the search parameter.
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The amplitude factor is nothing more than the derivative of pn with respect to ϕ. It is
also convenient to use the parametric expressions for the phase factors si(p, α) and sf (p′, β)

coming from initial and final states in terms of the associated angle variables

si = −
∫ p

q(p) dp = −
∫ ϕ

dϕ′′pi(α, ϕ′′) dqi(α, ϕ′′)/dϕ′′,

sf = −
∫ p′

q(p) dp = −
∫ ϕ′

dϕ′′pf (α, ϕ′′) dqf (α, ϕ′′)/dϕ′′. (A.23)

The phase factor μ(�) together with the selection of the branch of the amplitude factor Â(�)
n

can practically be determined by analytically continuing the propagator along an appropriate
path which is taken avoiding the unphysical regions on the (ξ, η)-plane, which are removed
because of the Stokes phenomenon.

Appendix B. Some basic features of Laputa chains

In this appendix we describe some basic features of the Laputa chain. In particular we show
that the close connection between adjacent branches forming a Laputa chain is due to quasi-real
caustics.

First we explain what the smallness of the Laputa chain implies. The length scale in the
initial plane is multiplied by the factor ‖Dgn(p0 = α, q0)‖ in the time-evolved (qn, pn) space,
and so the characteristic size sn of the branch at the step n should be

sn ∼ 1/Max(|dpn/dq0|, |dqn/dq0|) (B.1)

if any dynamical structure with the length scale of O(1) corresponds to a branch in the Laputa
chain. In particular, if chaotic dynamics is relevant, the size sn decreases exponentially with n
because of the exponential sensitivity of the trajectories. Indeed, the characteristic size of the
branches constituting the Laputa chain decreases exponentially with n.

As shown in figure 2, each constituent branch in the Laputa chain is separated from
an adjacent branch by a narrow gap whose size is much less than sn. In such a gap, there
always exists a caustic connecting the two branches. To understand this we consider the local
behavior of the branch around a complex caustic specified by condition (26). Close to a caustic
q0 = q

(c)
0 , we can expand

pn − p(c)
n = p(c)′′

n

(
q0 − q

(c)
0

)2/
2 + O

(∣∣q0 − q
(c)
0

∣∣3), (B.2)

where p(c)
n = pn

(
q

(c)
0 , α

)
and ’ indicates derivative with respect to q0 at q0 = qc

0 . Take x, y

as properly chosen local Cartesian coordinates around the caustic q0 = q
(c)
0 on the complex

q0-plane. Scaling them by the size of the branch, we immediately obtain

xy = −Imp(c)
n

∣∣p(c)′′
n

∣∣−1
s−2
n . (B.3)

Equation (B.3) tells us that the branches around each caustic form a pair of hyperbola
on the q0 plane, as shown in figure 2. The distance between branches is given by
dn = 2

√
2
∣∣Im p(c)

n

∣∣∣∣p(c)′′
n

∣∣−1
s−2
n ∼ ∣∣Im p(c)

n

∣∣ considering that
∣∣d2pn(q0)

/
dq2

0

∣∣ ∼ s−2
n , and

so the narrowness of the gap means that
∣∣Im p(c)

n

∣∣ � 1, which is due to the caustic being
located close to the real plane.
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[25] Hénon M 1979 Commun. Math. Phys. 50 69
[26] Friedland S and Milnor J 1989 Ergod Theory Dyn. Syst. 9 67
[27] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer)
[28] Hubbard J H and Oberste-Vorth R W 1994 Publ. Math. L’IHÉS 79 5
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